OpenFLUX2: 13C-MFA modeling software package adjusted for the comprehensive analysis of single and parallel labeling experiments
نویسندگان
چکیده
BACKGROUND Steady-state (13)C-based metabolic flux analysis ((13)C-MFA) is the most powerful method available for the quantification of intracellular fluxes. These analyses include concertedly linked experimental and computational stages: (i) assuming the metabolic model and optimizing the experimental design; (ii) feeding the investigated organism using a chosen (13)C-labeled substrate (tracer); (iii) measuring the extracellular effluxes and detecting the (13)C-patterns of intracellular metabolites; and (iv) computing flux parameters that minimize the differences between observed and simulated measurements, followed by evaluating flux statistics. In its early stages, (13)C-MFA was performed on the basis of data obtained in a single labeling experiment (SLE) followed by exploiting the developed high-performance computational software. Recently, the advantages of parallel labeling experiments (PLEs), where several LEs are conducted under the conditions differing only by the tracer(s) choice, were demonstrated, particularly with regard to improving flux precision due to the synergy of complementary information. The availability of an open-source software adjusted for PLE-based (13)C-MFA is an important factor for PLE implementation. RESULTS The open-source software OpenFLUX, initially developed for the analysis of SLEs, was extended for the computation of PLE data. Using the OpenFLUX2, in silico simulation confirmed that flux precision is improved when (13)C-MFA is implemented by fitting PLE data to the common model compared with SLE-based analysis. Efficient flux resolution could be achieved in the PLE-mediated analysis when the choice of tracer was based on an experimental design computed to minimize the flux variances from different parts of the metabolic network. The analysis provided by OpenFLUX2 mainly includes (i) the optimization of the experimental design, (ii) the computation of the flux parameters from LEs data, (iii) goodness-of-fit testing of the model's adequacy, (iv) drawing conclusions concerning the identifiability of fluxes and construction of a contribution matrix reflecting the relative contribution of the measurement variances to the flux variances, and (v) precise determination of flux confidence intervals using a fine-tunable and convergence-controlled Monte Carlo-based method. CONCLUSIONS The developed open-source OpenFLUX2 provides a friendly software environment that facilitates beginners and existing OpenFLUX users to implement LEs for steady-state (13)C-MFA including experimental design, quantitative evaluation of flux parameters and statistics.
منابع مشابه
File 1 . OpenFLUX 2 : 13 C - MFA modeling software package adjusted for the comprehensive analysis of single and parallel labeling experiments
متن کامل
Visual workflows for 13C-metabolic flux analysis
MOTIVATION The precise quantification of intracellular metabolic flow rates is of fundamental importance in bio(techno)logy and medical research. The gold standard in the field is metabolic flux analysis (MFA) with 13C-labeling experiments. 13C-MFA workflows orchestrate several, mainly human-in-the-loop, software applications, integrating them with plenty of heterogeneous information. In practi...
متن کاملA Method to Constrain Genome-Scale Models with 13C Labeling Data
Current limitations in quantitatively predicting biological behavior hinder our efforts to engineer biological systems to produce biofuels and other desired chemicals. Here, we present a new method for calculating metabolic fluxes, key targets in metabolic engineering, that incorporates data from 13C labeling experiments and genome-scale models. The data from 13C labeling experiments provide st...
متن کاملInvestigation of useful carbon tracers for 13C-metabolic flux analysis of Escherichia coli by considering five experimentally determined flux distributions
The 13C-MFA experiments require an optimal design since the precision or confidence intervals of the estimated flux levels depends on factors such as the composition of 13C-labeled carbon sources, as well as the metabolic flux distribution of interest. In this study, useful compositions of 13C-labeled glucose for 13C-metabolic flux analysis (13C-MFA) of Escherichia coli are investigated using a...
متن کاملOpenMebius: An Open Source Software for Isotopically Nonstationary 13C-Based Metabolic Flux Analysis
The in vivo measurement of metabolic flux by (13)C-based metabolic flux analysis ((13)C-MFA) provides valuable information regarding cell physiology. Bioinformatics tools have been developed to estimate metabolic flux distributions from the results of tracer isotopic labeling experiments using a (13)C-labeled carbon source. Metabolic flux is determined by nonlinear fitting of a metabolic model ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2014